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Abstract
By suitably averaging over U(1)-group action on a two-mode nonlinear
coherent state we derive the nonlinear conserved-charge coherent state. Based
on it, a new nonlinear entangled state |η〉f,g and its deductive state are
introduced. Their completeness relation is proved. A new two-mode nonlinear
squeezing operator in |η〉f,g representation is obtained, which in turn leads to a
nonlinear negative binomial state.

PACS numbers: 03.65.-w, 42.50.-p, 42.65.-k

1. Introduction

Many quantum states of a radiation field, such as a squeezed state, phase states, negative
binomial state, can be viewed as a sort of nonlinear coherent state (NCS) [1–9]. NCS has
been paid a great deal of attention in recent years by physicists. The most interesting aspect is
that they exhibit nonclassical features [10–13]. A class of NCS can be realized physically as
the stationary states of centre-of-mass motion of a trapped ion [14]. The single-mode NCS is
defined as

f (Na)a |α〉f = α |α〉f (1)

where the subscript f means that the eigenstate |α〉f is related to the operator f (Na), Na =
a†a. By considering the relations

Naa = a(Na − 1) Naa
† = a†(Na + 1)[

f (Na)a,
1

f (Na − 1)
a†

]
= [
a, a†

] = 1
(2)

one can ensure that the single-mode NCS has the form

|α〉f = exp

[
α

f (Na − 1)
a†

]
|0〉 (3)
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where a |0〉 = 0. By straightforwardly extending |α〉f to the two-mode case we get

|α, β〉f,g = exp

[
α

f (Na − 1)
a† +

β

g(Nb − 1)
b†

]
|00〉 = |α〉f ⊗ |β〉g . (4)

In this paper, we want to extend the Bhaumik–Baumik–Dutta–Roys (BBDR) coherent states of
charged bosons [15] to the nonlinear operator case, and construct nonlinear conserved-charge
coherent states (NCCCS). The BBDR coherent states are the common eigenvector ofNa −Nb
and ab, since [Na −Nb, ab] = 0:

ab |α, q〉 = α |α, q〉 (Na −Nb) |α, q〉 = q |α, q〉 (5)

where

|α, q〉 = Cq
∞∑
n=0

αn

[n!(n + q)!]1/2
|n + q, n〉 (6)

which, in quantum optics theory, is called a pair coherent state [16]. Here we observe

[Na −Nb, f (Na)ag(Nb)b] = 0

so we try to construct NCCCS, denoted as
∣∣r2, q

〉
f,g

, which obeys the equations

(Na −Nb)|r2, q〉f,g = q|r2, q〉f,g
f (Na)g(Nb)ab|r2, q〉f,g = r2|r2, q〉f,g. (7)

We then show that NCCCS is related to a kind of nonlinear entangled state, which makes
up a completeness relation and is able to constitute a new nonlinear quantum mechanical
representation. In this representation, a new two-mode nonlinear squeezing operator can be
naturally introduced, and a nonlinear negative binomial state can then be defined. Through our
discussions, the technique of integration within an ordered product of operators for nonlinear
Bose operators is used.

2. Nonlinear conserved-charge coherent state and its relation to nonlinear entangled
state

We now derive NCCCS in terms of |α, β〉f,g by setting

α = λe−i(θ+ϕ) β = µe−i(θ−ϕ)

and then making an average for |α, β〉f,g over a U(1) phase eiqϕ , i.e.

∣∣λµe−2iθ , q
〉
f,g

= 1

2π

∫ 2π

0
dϕ eiqϕ |α, β〉f,g

= Nq
∞∑
n=0

(
λµe−2iθ

)n
[n!(n + q)!]1/2 ∏n+q−1

l=0 f (l)
∏n−1
m=0 g(m)

|n + q, n〉 (8)

where Nq is a normalization constant depending on f and g. Let λ = µ = reiθ . Then (8)
becomes ∣∣r2, q

〉
f,g

= 1

2π

∫ 2π

0
dϕ eiqϕ exp

[
re−iϕ

f (Na − 1)
a† +

reiϕ

g(Nb − 1)
b†

]
|00〉

= Nq
∞∑
n=0

r2n

[n!(n + q)!]1/2 ∏n+q−1
l=0 f (l)

∏n−1
m=0 g(m)

|n + q, n〉 . (9)
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One can check that the NCCCS
∣∣r2, q

〉
f,g

is really the common eigenstate off (Na)g(Nb)ab and
Na −Nb. When f = g = 1, it reduces to the BBDR charged coherent state (6). Furthermore,
due to [

1

f (Na − 1)g(Nb − 1)
a†b†, Na −Nb

]
= 0 (10)

we see that there exists another state which also conserves charge. In fact, by
exp[ 1

f (Na−1)g(Nb−1) a
†b†] acting on

∣∣r2, q
〉
f,g

we have

e−r2/2−1/[f (Na−1)g(Nb−1)]a†b† ∣∣r2, q
〉
f,g

= 1

2π

∫ 2π

0
dϕ eiqϕ exp

[
− r2/2 − 1

f (Na − 1)g(Nb − 1)
a†b†

+
re−iϕ

f (Na − 1)
a† +

reiϕ

g(Nb − 1)
b†

]
|00〉 ≡ ||r2, q〉f,g (11)

where ||r2, q〉f,g obeys

(Na −Nb)
∣∣∣∣r2, q

〉
f,g

= q ∣∣∣∣r2, q
〉
f,g
. (12)

On the other hand, from (11) we can define a new state

|η ≡ re−iϕ〉f,g = exp

[
− |η|2/2 − 1

f (Na − 1)g(Nb − 1)
a†b†

+
η

f (Na − 1)
a† +

η∗

g(Nb − 1)
b†

]
|00〉 . (13)

Then (11) is simplified as∣∣∣∣r2, q
〉
f,g

= 1

2π

∫ 2π

0
dϕ eiqϕ

∣∣η = re−iϕ
〉
. (14)

The state |η = re−iϕ〉f,g obeys[
f (Na)a +

1

g(Nb − 1)
b†

]
|η〉f,g = η |η〉f,g[

g(Nb)b +
1

f (Na − 1)
a†

]
|η〉f,g = η∗ |η〉f,g

(15)

and[
f (Na)a +

1

g(Nb − 1)
b†

] [
g(Nb)b +

1

f (Na − 1)
a†

]
|η〉f,g = r2 |η〉f,g . (16)

It then follows from (14) and (16) that[
f (Na)a +

1

g(Nb − 1)
b†

] [
g(Nb)b +

1

f (Na − 1)
a†

] ∣∣∣∣r2, q
〉
f,g

= r2
∣∣∣∣r2, q

〉
f,g
. (17)

Note that, though ||r2, q〉f,g also conserves charge, as shown by (12), it is not a coherent state
(see the next section). When f = g = 1, |η〉f,g reduces to

|η〉 = exp
[− |η|2/2 − a†b† + ηa† + η∗b†

] |00〉
which is an entangled state constructed [17] according to the Einstein, Podolsky and
Rosen (EPR) argument [18], since it is the common eigenvector of x1 + x2 =

1√
2

(
a + a† + b + b†

)
and P1 − P2 = 1√

2i

(
a − a† − b + b†

)
. Thus we call |η〉f,g the non-

linear entangled state. Now we conclude that
∣∣∣∣r2, q

〉
f,g

is a deductive state from the nonlinear
entangled state.
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3. IWOP technique for nonlinear Bose operators

For discussing the completeness relation of the nonlinear entangled states we appeal to the
technique of integration within an ordered product (IWOP) for nonlinear operators. To begin
with, let us first recall the IWOP technique for fundamental Bose operators a† and a [19–24]:

(1) The order of Bose operators a and a† within a normally ordered product : : can be permuted.
That is to say, even though

[
a, a†

] = 1, : aa† :=: a†a :.
(2) The symbol : : which is within another symbol : : can be deleted.
(3) A normally ordered product can be integrated or differentiated with respect to a c number,

provided the integration is convergent.
(4) The vacuum state projection operator in normal ordering form is

|0〉 〈0| =: exp(−a†a) : . (18)

As a demonstration of IWOP, we use the mathematical formula∫
d2z

π
exp(τ |z|2 + ξz + z∗η) = − 1

τ
exp

(
−ξη
τ

)
Re τ < 0 (19)

to obtain the overcompleteness relation of the ordinary coherent state |z〉 = exp(− |z|2 /2 +
za†) |0〉:∫

d2z

π
|z〉 〈z| =

∫
d2z

π
exp

(
−|z|2

2
+ za†

)
|0〉 〈0| exp

(
−|z|2

2
+ z∗a

)

=
∫

d2z

π
: exp

(− |z|2 + za† + z∗a − a†a
)

:=: exp(a†a − a†a) := 1. (20)

The IWOP for Fermi operators was also introduced in [25] and its use in deriving the fermionic
Bogoliubov–Valatin transformation was very recently shown in [26]. Now we are dealing with
nonlinear Bose operator partners f (Na)a and 1

f (Na−1) a
†, due to (2) and

f (Na)a
1

f (Na − 1)
a† = aa† 1

f (Na − 1)
a†f (Na)a = a†a. (21)

We see that f (Na)a and 1
f (Na−1) a

† behave like a and a†, respectively, so we can introduce the

generalized normal ordering symbol ◦
◦

◦
◦ for f (Na)a and 1

f (Na−1) a
†. When all 1

f (Na−1) a
† stand

on the left of f (Na)a, we say that they are in generalized normal ordering. Correspondingly,
the generalized IWOP technique for them can be introduced whose main properties are:

(1) The order of nonlinear Bose operators f (Na)a and 1
f (Na−1) a

† within a generalized
normally ordered product ◦

◦
◦
◦ can be permuted. That is to say, even though

[f (Na)a, 1
f (Na−1) a

†] = 1, we have

◦
◦f (Na)a

1

f (Na − 1)
a† ◦

◦ = ◦
◦

1

f (Na − 1)
a†f (Na)a

◦
◦

= 1

f (Na − 1)
a†f (Na)a. (22)

(2) The symbol ◦
◦

◦
◦ . which is within another symbol ◦

◦
◦
◦ , can be deleted.

(3) A generalized normally ordered product can be integrated or differentiated with respect
to a c number, provided the integration is convergent.

(4) The vacuum state projection operator in the generalized normal ordering form is

|0〉 〈0| = ◦
◦ exp

(
− 1

f (Na − 1)
a†f (Na)a

) ◦
◦ . (23)
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To prove this we turn the usual normal ordering (18) of |0〉 〈0| to generalized normal ordering,
using property (2). We see

: (a†a)n := a†nan =
[

1

f (Na − 1)
a†

]n
[f (Na)a]n = ◦

◦
[

1

f (Na − 1)
a†f (Na)a

]n ◦
◦ (24)

and hence

|0〉 〈0| =
∞∑
n=0

(−)n
n!

◦
◦
[

1

f (Na − 1)
a†f (Na)a

]n ◦
◦ = ◦

◦ exp

(
− 1

f (Na − 1)
a†f (Na)a

) ◦
◦ .

(25)

4. Overcompleteness relation of the nonlinear entangled state

To make up a completeness relation of nonlinear pair coherent states we should also introduce
the following state:

|η〉〉f,g = exp[−r2/2 − f (Na − 1)g(Nb − 1)a†b† + ηf (Na − 1)a† + η∗g(Nb − 1)b†] |00〉 .
(26)

By using the generalized IWOP technique and

|00〉 〈00| = ◦
◦ exp

[
− 1

f (Na − 1)
a†f (Na)a − 1

g(Nb − 1)
b†g(Nb)b

] ◦
◦

we can easily verify that |η〉f,g and
( |η〉〉f,g)†

satisfy the overcompleteness relation∫
d2η

π
|η〉f,g f,g 〈〈η| =

∫
d2η

π
exp

[
− |η|2 /2 − 1

f (Na − 1)g(Nb − 1)
a†b†

+
η

f (Na − 1)
a† +

η∗

g(Nb − 1)
b†

]
|00〉 〈00| exp

[− |η|2 /2 − abf (Na − 1)g(Nb − 1) + η∗af (Na − 1) + ηbg(Nb − 1)
]

=
∫

d2η

π

◦
◦ exp

[
− |η|2 − 1

f (Na − 1)g(Nb − 1)
a†b†

+η

(
1

f (Na − 1)
a† + bg(Nb − 1)

)
+ η∗

(
1

g(Nb − 1)
b† + af (Na − 1)

)

− 1

f (Na − 1)
a†f (Na)a − 1

g(Nb − 1)
b†g(Nb)b

− 1

f (Na − 1)g(Nb − 1)
a†b† − abf (Na − 1)g(Nb − 1)

]◦
◦ = 1 (27)

where we have use equation (19). It can be rewritten as

1

π

∫ ∞

0
r dr

∫ 2π

0
dϕ
∣∣η = re−iϕ

〉
f,g f,g

〈〈
η = re−iϕ

∣∣ = 1. (28)

Then we introduce

∣∣∣∣r2, q
〉〉
f,g

= 1

2π

∫ 2π

0
dϕ eiqϕ

∣∣η = re−iϕ
〉〉
f,g
. (29)
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By using equations (14) and (29), we calculate

+∞∑
q=−∞

∫ ∞

0
d(r2)||r2, q〉f,g f,g〈〈r2, q|| = 1 (30)

then the orthonormal property of
∣∣∣∣r2, q

〉
f,g

and
∣∣∣∣r2, q

〉〉
f,g

is obvious:

f,g

〈〈
r ′2, q ′∣∣∣∣ [f (Na)a +

1

g(Nb − 1)
b†

] [
g(Nb)b +

1

f (Na − 1)
a†

] ∣∣∣∣r2, q
〉
f,g

= r ′2f,g
〈〈
r ′2, q ′∣∣∣∣ r2, q

〉
f,g

= r2
f,g

〈〈
r ′2, q ′∣∣∣∣ r2, q

〉
f,g

(31)

f,g

〈〈
r ′2, q ′∣∣∣∣ (Na −Nb)

∣∣∣∣r2, q
〉
f,g

= q ′
f,g

〈〈
r ′2, q ′∣∣∣∣ r2, q

〉
f,g

= qf,g
〈〈
r ′2, q ′∣∣∣∣ r2, q

〉
f,g

(32)

and

f,g

〈〈
r ′2, q ′∣∣∣∣ r2, q

〉
f,g

= 1

2r
δ(r − r ′)δq,q ′ . (33)

5. Two-mode nonlinear squeezing transformation

In a nonlinear entangled state representation we can calculate the following bra-ket integration:

Sf,g(λ) =
∫

d2η

π
|η/u〉f,g f,g〈〈η| = ◦

◦
∫

d2η

π
exp

[
− |η|2

2

(
1 +

1

u2

)

+
η

f (Na − 1)u
a† +

η∗

g(Nb − 1)
b† − 1

f (Na − 1)g(Nb − 1)
a†b†

− 1

f (Na − 1)
a†f (Na)a − 1

g(Nb − 1)
b†g(Nb)b − abf (Na − 1)g(Nb − 1)

+η∗af (Na − 1) + ηbg(Nb − 1)

]◦
◦

= (sechλ)
◦
◦ exp

[
tanh λ

1

f (Na − 1)
a† 1

g(Nb − 1)
b†

+

(
1

f (Na − 1)
a†f (Na)a +

1

g(Nb − 1)
b†g(Nb)b

)
(sechλ− 1)

− tanh λf (Na)ag(Nb)b

]◦
◦ = exp

[
tanh λ

1

f (Na − 1)
a† 1

g(Nb − 1)
b†

]
× exp

[(
a†a + b†b + 1

)
ln sechλ

] · exp [− tanh λf (Na)ag(Nb)b] (34)

where u = eλ, and in the last step we have used the operator identity

eka
†a =: exp{(ek − 1)a†a} := ◦

◦ exp

{
(ek − 1)

1

f (Na − 1)
a†f (Na)a

} ◦
◦ . (35)

Under the Sf,g (λ) transformation,

Sf,g (λ)
1

f (Na − 1)
a†Sf,g (λ)

−1 = 1

f (Na − 1)
a† cosh λ− g(Nb)b sinh λ (36)

Sf,g (λ) f (Na)aSf,g (λ)
−1 = f (Na)a cosh λ− 1

g(Nb − 1)
b† sinh λ (37)
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which is a two-mode nonlinear squeezing transformation. Moreover, from Sf,g we can in turn
derive

Sf,g (λ) |q, 0〉 = (sechλ)q+1 exp

[
tanh λ

1

f (Na − 1)
a† 1

g(Nb − 1)
b†

]
|q, 0〉

= (sechλ)q+1
∞∑
n=0

[(n + q)!]1/2 (tanh λ)n

(n!q!)1/2
∏n+q−1
l=q f (l)

∏n−1
m=0 g(m)

|n + q, n〉.

When f = g = 1, Sf,g (λ) becomes the well-known two-mode squeezing operators [27], and

Sf,g (λ) |q, 0〉 → (sechλ)q+1
∞∑
n=0

[(n + q)!]1/2 (tanh λ)n

(n!q!)1/2
|n + q, n〉

which is a nonlinear charge-conserved state with negative binomial distribution [16,28], since
the modulus square of the coefficient of |n + q, n〉 gives

(sech2λ)q+1 (n + q)!

n!q!

(
tanh2 λ

)n
.

In summary, based on two-mode NCS we have generalized BBDR conserved-charge coherent
states to the nonlinear case, and a new nonlinear entangled state |η〉f,g as well as its deductive
state are also derived. Their completeness relation is proved by virtue of the generalized
IWOP technique. A new two-mode nonlinear squeezing operator in the |η〉f,g representation
is obtained, which in turn leads to a nonlinear negative binomial state.
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